Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval


首页 >> 文章检索 >> 最新索引


来源:电工电气发布时间:2020-04-20 13:20 浏览次数:45
(1 海南电网有限责任公司电力科学研究院,海南 海口 570000;2 国网电力科学研究院武汉南瑞有限责任公司,湖北 武汉 430074;
3 武汉大学 电气与自动化学院,湖北 武汉 430072)
    摘 要:局部放电(PD)测量是检测甚至识别交联聚乙烯(XLPE)电缆绝缘缺陷的有效工具,设置了内半导电层破损、绝缘内部气隙缺陷、绝缘表面划痕缺陷和外半导电层爬电缺陷等四种绝缘缺陷,在直流条件下进行了各种缺陷的PD老化实验,发现PD在不同老化阶段表现出不同的特性,导致PD指纹参数随着老化时间产生波动。为了提高识别效果,提出了基于BRNN 算法的缺陷识别模型,由局部放电特征将局放序列划分为五个阶段,分别提取每个阶段下的指纹参数后再结合局部放电阶段信息作为BRNN算法输入。该方法将绝缘老化下局部放电的时序特性纳入考虑,将缺陷识别效率由72.93%提升至93.71%。
    中图分类号:TM726.4;TM855     文献标识码:A     文章编号:1007-3175(2020)04-0016-09
Identifying Insulation Defects of XLPE Cable with Suppressing the Influence of PD Aging
FU Fang-da1, YANG Xu2, PAN Cheng3, YAO Yu-hang3, JIANG Yi2, ZHANG Jing2, WANG Lu-liang1
(1 Hainan Electric Power Research Institute, Haikou 570000, China; 2 Wuhan Nari Electric Co., Ltd, Wuhan 430074, China;
3 School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)
    Abstract: Partial discharge (PD) measurement is an effective tool for testing and even identifying the insulation defects of cross-linked polyethylene (XLPE) cables. Four kinds of defects were set, including internal semi-conductive layer damage, internal air gap of the insulation flaw, insulation surface scratch, and the outer semi-conductive layer creep.PD aging test with various defects were performed under DC conditions, and then found that PD showed different characteristics at different aging stages, which caused PD fingerprint parameters to fluctuate with aging time. In order to improve the recognition effect, a defect recognition model based on the BRNN algorithm is proposed. The partial discharge sequence is divided into five stages based on the partial discharge characteristics. The fingerprint parameters at each stage are extracted and combined with the partial discharge stage information as the BRNN algorithm input. This method takes into account the timing characteristics of partial discharge under insulation aging, and improves defect recognition efficiency from 72.93% to 93.71 %.
    Key words: XLPE cable; insulation defects; PD aging; fingerprint parameters; BRNN model
[1] VAHEDY V.Polymer insulated high voltage cables[J]. IEEE Electrical Insulation Magazine,2006,22(3):13-18.
[2] 何金良,党斌,周垚,等. 挤压型高压直流电缆 研究进展及关键技术述评[J]. 高电压技术,2015,41(5):1417-1429.
[3] BAHDER G, KATZ C, EAGER G S, et al.Life expectancy of crosslinked polyethylene insulated cables rated 15 to 35 kV[J].IEEE Transactions Power Apparatus and Systems,1981,100(4):1581-1590.
[4] MORSHUIS P H F, SMIT J J. Partial discharges at dc voltage:Their mechanism, detection and analysis[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(2):328-340.
[5] CAVALLINI A, MONTANARI G C, TOZZI M, et al. Diagnostic of HVDC systems using partial discharges[J].IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(1):275-284.
[6] LI Junhao, HAN Xutao, LIU Zehui, et al.PD characteristics of oil-pressboard insulation under AC and DC mix voltage[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(1):444-450.
[7] FABIANI D, MONTANARI G C, DISSADO L A. Space charge accumulation due to ultra-fast charge packets in XLPE insulated cables:The effect of temperature and field[C]//IEEE 9th International Conference on Properties & Applications of Dielectric Materials,2009.
[8] 司文荣,李军浩,袁鹏,等. 直流下局部放电序列信号检测与特性分析[J]. 电工技术学报,2010,25(3):164-171.
[9] SAHOO N C, SALAMA M M A, BARTNIKAS R.Trends in partial discharge pattern classification:A survey[J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(2):248-264.
[10] FROMM U.Interpretation of partial discharges at dc voltages[J].IEEE Transactions on Dielectrics and Electrical Insulation,1995,2(5):761-770.
[11] GRAVES A.Hidden Markov Model Hybrids[M]. Toronto:Supervised Sequence Labelling with Recurrent Neural Networks,2012.
[12] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[13] KIM J Y, PARK D C, WOO D M.Application of Pruned Bilinear Recurrent Neural Network to Load Prediction[C]//The 8th ACS/IEEE International Conference on Computer Systems and Applications,2010.
[14] MOHANTY S, GHOSH S. Artificial neural networks modelling of breakdown voltage of solid insulating materials in the presence of void[J]. IET Science, Measurement & Technology,2010,4(5):278-288.


喜盈盈彩票注册 彩70注册开户投注平台 龙头彩票开户 利新彩票开户注册投注 好运彩票注册开户投注平台 天津11选5 天天红彩票下载 搜狐彩票注册开户投注平台 鸿瑞彩票注册开户投注平台 现金彩票注册开户投注平台