Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 最新索引

基于自适应观测器的风力发电机液压变桨系统故障诊断

来源:电工电气发布时间:2019-11-19 13:19 浏览次数:13
基于自适应观测器的风力发电机液压变桨系统故障诊断
 
胡昌选,文传博
(上海电机学院 电气学院,上海 201306)
 
    摘 要:液压变桨系统是风力发电机组中故障多发的重要部件,对其展开故障诊断具有重要意义。针对受到丢包和状态延时影响的风机变桨系统故障,提出一种基于自适应观测器的故障诊断方法。将复杂的变桨系统转化为相应的状态空间模型,并根据相应的系统故障模型设计出自适应观测器。将故障模型进行离散化之后,设置合理的系统增益矩阵以及自适应调节律,并对观测器的稳定性展开了证明。仿真结果证明了观测部分能够准确地对真实值进行跟踪,实现了对变桨系统故障诊断的目标。
    关键词:风力发电机组;状态时延和丢包;变桨系统;自适应观测器;故障诊断
    中图分类号:TM614    文献标识码:A     文章编号:1007-3175(2019)11-0005-06
 
Fault Diagnosis of Wind Turbine Hydraulic Variable Pitch System Based on Adaptive Observer
 
HU Chang-xuan , WEN Chuan-bo
(School of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China)
 
    Abstract: The hydraulic variable pitch system of wind turbine is the main multi-fault component, so it is very necessary to carry out fault diagnosis. A fault diagnosis method based on adaptive observation was proposed for the fault of wind turbine variable pitch system affected by state delay and loss of package. The complex variable pitch system was transformed into the corresponding state space model, and the adaptive observer was designed according to the corresponding system fault model. After the fault model was discretized, a reasonable gain matrix and adaptive regulation law are set up, and the stability of the observer was proved. The simulation results show that the observer part can accurately track the real value and realize the goal of fault diagnosis for the variable pitch system.
    Key words: wind turbine; state delay and packet loss; variable pitch system; adaptive observer; fault diagnosis
 
参考文献
[1] 谢小荣,刘华坤,贺静波,等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报,2016,36(9):2366-2372.
[2] 曾军,陈艳峰,杨苹,等. 大型风力发电机组故障诊断综述[J]. 电网技术,2018,42(3):849-860.
[3] XU L, LIN R, DING L, et al.Enhancing the LVRT Capability of PMSG-Based Wind Turbines Based on R-SFCL[C]//IOP Conference Series: Materials Science and Engineering,2018,322(7):072044.
[4] XIAO C, JIAO Z, SUN J, et al.Fault prediction of variable pitch system of wind turbine based on wavelet BP neural network[J]. Renewable Energy Resources,2017,35(6):893-899.
[5] CHEN X, YAN R, LIU Y.Wind Turbine Condition Monitoring and Fault Diagnosis in China[J]. IEEE Instrumentation & Measurement Magazine,2016,19(2):22-28.
[6] YAO Z, YU Y, YAO J.Artificial neural networkbased internal leakage fault detection for hydraulic actuators: An experimental investigation[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2018,232(4):369-382.
[7] GONG X, QIAO W.Bearing Fault Diagnosis forDirect-Drive Wind Turbines via Current- Demodulated Signals[J].IEEE Transactions on Industrial Electronics,2013,60(8):3419-3428.
[8] 李学伟. 基于数据挖掘的风电机组状态预测及变桨系统异常识别[D]. 重庆:重庆大学,2012.
[9] LAOUTI N, OTHMAN S, ALAMIR M, et al. Combination of Model-Based Observer and Support Vector Machines for Fault Detection of Wind Turbines[J].International Journal of Automation & Computing,2014,11(3):274-287.
[10] 张柯,姜斌,刘京津. 基于自适应观测器控制系统的快速故障调节[J]. 控制与决策,2008,23(7):771-775.
[11] 贺乃宝,姜长生. 基于Lyapunov方法的非线性系统自适应观测器设计[J]. 南京航空航天大学学报,2006,38(3):267-270.
[12] 祝乔,崔家瑞. 非线性延时系统的观测器设计[J].控制工程,2012,19(3):374-376.
[13] 朱张青,周川,胡维礼. 短时延网络控制系统的鲁棒H2/H状态观测器设计[J]. 控制与决策,2005,20(3):280-284.
[14] SLOTH C, ESBENSEN T, STOUSTRUP J.Robust and fault-tolerant linear parameter-varying control of wind turbines[J].Mechatronics,2011,21(4):645-659.
[15] WANG Y L, HAN Q L.Observer-based continuoustime networked control system design[C]// Proceedings of the American Control Conference,2012:5694-5699.
[16] BEILZADEH H, MARQUEZ H J.Multirate output feedback control of nonlinear networked control systems[J].IEEE Transactions on Automatic Control,2015,60(7):1939-1944.
[17] BESANCON G,TICLEA A.On adaptive observers for systems with state and parameter nonlinearities[J].IFAC-PapersOnLine,2017,50(1):15416-15421.
[18] 吴定会,刘稳,宋锦. 基于SDW-LSI算法的风力机故障估计与容错控制[J]. 电力系统保护与控制,2017,45(4):64-71.
[19] 杨洪玖,夏元清,李惠光.Delta算子系统简述[J].控制理论与应用,2015,32(5):569-578.
博宏彩票注册开户投注平台 安徽快3计划 玖壹彩票注册开户投注平台 易中彩票注册 鸿瑞彩票注册开户投注平台 鸿途彩票注册开户投注平台 鸿途彩票注册开户投注平台 乐万家彩票注册开户投注平台 今晚六合开奖直播 六合开奖网址