Suzhou Electric Appliance Research Institute
期刊号: CN32-1800/TM| ISSN1007-3175

Article retrieval

文章检索

首页 >> 文章检索 >> 栏目索引

电力系统谐波状态估计算法综述

来源:电工电气发布时间:2019-09-19 10:19 浏览次数:38
电力系统谐波状态估计算法综述
 
俞明1,吕干云1,魏鹏1,蒋小伟2
(1 南京工程学院 电力工程学院,江苏 南京 211167;2 国网浙江省电力有限公司检修分公司,浙江 杭州 311200)
 
    摘 要:谐波状态估计是根据有限节点上的谐波测量估算出未知节点及整个系统的谐波状况,对于电力系统谐波监测和治理具有重要意义。介绍了谐波状态估计技术的概念、数学模型和估计算法,重点根据谐波阻抗是否已知,对主要的估计算法进行分类与评述,并对谐波状态估计今后的研究方向进行了展望。
    关键词:电力系统;谐波;状态估计;谐波阻抗
    中图分类号:TM712     文献标识码:A     文章编号:1007-3175(2019)09-0001-06
 
Review on Harmonic State Estimation Algorithm of Power System
 
YU Ming1, LYU Gan-yun1, WEI Peng1, JIANG Xiao-wei2
(1 School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 2111 67, China;
2 Inspection Branch of State Grid Zhejiang Electric Power Co., Ltd, Hangzhou 311 200, China)
 
    Abstract: Harmonic state estimation is based on the harmonic measurements of the finite node to estimate the harmonic state of the unknown node and the whole system, which is of great significance for the harmonic monitoring and control of the power system. Introduction was made to the concept, mathematical model and estimation algorithm of harmonic state estimation. The main estimation algorithms were classified and reviewed emphatically based on whether the harmonic impedance was known. The future research on harmonic state estimation is summarized and forecasted.
    Key words: power system; harmonic; state estimation; harmonic impedance
 
参考文献
[1] 梁志瑞,叶慧强,赵飞. 电力系统谐波状态估计研究综述[J]. 电力系统保护与控制,2010,38(15):157-160.
[2] 吴笃贵,徐政. 电力系统谐波状态估计技术发展与展望[J]. 电网技术,1998,22(1):75-77.
[3] 吴笃贵,徐政. 基于相量量测的电力系统谐波状态估计(Ⅰ)——理论、模型与求解算法[J]. 电工技术学报,2004,19(2):64-68.
[4] 林海雪,范明天,薛蕙. 电力系统谐波[M]. 北京:中国电力出版社,2008.
[5] HEYDT G T.Identification of harmonic sources by a state estimation technique[J].IEEE Transactions on Power Delivery,1989,4(1):569-576.
[6] NAJJAR M Y, HEYDT G T.A hybrid nonlinear least squares estimation of harmonic signal levels in power systems[J].IEEE Transactions on Power Delivery,1991,6(1):1101-1106.
[7] MELIOPOULOS A P S, ZHANG F, SHALOM Z.Power system harmonic state estimation[J].IEEE Transactions on Power Delivery,1994,9(3):1701-1709.
[8] 李碧君,薛禹胜,顾锦汶,等. 电力系统状态估计问题的研究现状和展望[J]. 电力系统自动化,1998,22(11):53-60.
[9] 周念成,谭桂华,何建森,等. 基于统计方法的电网谐波状态估计误差分析[J]. 电工技术学报,2009,24(6):109-114.
[10] 牛胜锁,刘颖,梁志瑞,等. 基于广域测量系统和抗差最小二乘法的电力系统谐波状态估计[J]. 电力系统保护与控制,2012,40(8):10-14.
[11] 牛胜锁,张达,梁志瑞,等. 基于抗差总体最小二乘法的电力系统谐波状态估计[J]. 电力系统保护与控制,2014,42(11):106-111.
[12] DU Z P, ARRILLAGA J, WATSON N.Continuous harmonic state estimation of power systems[J]. IET Proceedings-Generation Transmission and Distribution,1996,143(4):329-336.
[13] 侯世英,汪瑶,祝石厚,等. 基于相量量测的电力系统谐波状态估计算法的研究[J]. 电工电能新技术,2008,27(2):42-46.
[14] MATAIR S S, WATSON N R, WONG K P.Harmonic state estimation: Amethod for remote harmonic assessment in a deregulated utility network[C]//2000 International Conference on Electric Utility DRPT, London,2000:41-46.
[15] YU K K C, WATSON N R.Three-phase harmonic state estimation using SVD for partially observable systems[C]//International Conference on Power System Technology, Singapore,2004:29-34.
[16] LIAO H W. Power system harmonic state estimation and observability analysis via sparsity maximization[J].IEEE Transactions on Power Systems,2007,22(1):15-23.
[17] 杨源,林圣,臧天磊,等. 基于改进稀疏表示法的谐波源定位[J]. 电网技术,2013,37(5):1279-1284.
[18] 邱璐,陈丽华,臧天磊,等. 基于可观性量测和梯度投影算法的谐波源定位[J]. 电网技术,2016,40(2):649-655.
[19] 牛胜锁,梁志瑞,张建华,等. 基于广义岭估计的电力系统谐波状态估计[J]. 电力自动化设备,2012,32(7):94-98.
[20] AREFI A, HAGHIFAM M R, FATHI S H.Distribution harmonic state estimation based on a modified PSO considering parameters uncertainty[C]//2011 IEEE Trondheim Power Tech, Trondheim,2011:1-7.
[21] AREFI A, HAGHIFAM M R, FATHI S H, et al.A novel algorithm based on honey bee mating optimization for distribution harmonic state estimation including distributed generators[C]//2009 IEEE Bucharest PowerTech, Bucharest,2009:1-7.
[22] 韩美玉,王艳松,张丽霞. 基于粒子群算法的电力系统非线性谐波状态估计[J]. 电力系统保护与控制,2013,41(22):98-102.
[23] DE ARRUDA E F, KAGAN N, RIBEIRO P F.Harmonic distortion state estimation using an evolutionary strategy[J].IEEE Transactions on Power Delivery,2010,25(2):831-842.
[24] BEIDES H M, HEYDT G T.Dynamic state estimation of power system harmonics using Kalman filter methodology[J].IEEE Transactions on Power Delivery,1991,6(4):1663-1670.
[25] YU K K C, WATSON N R, ARRILLAGA J. An adaptive Kalman filter for dynamic harmonic state estimation and harmonic injection tracking[J].IEEE Transactions on Power Delivery,2005,20(2):1577-1584.
[26] 王艳,臧天磊,符玲,等. 基于谐波源特征提取的电力系统动态谐波状态估计自适应方法[J]. 电网技术,2018,42(8):2612-2619.
[27] JEU M, HENG Y.A static state estimation approachincluding bad data detection and identification in power systems[C]//IEEE General Meeting Power Engineering Society, Tampa,2007:1-7.
[28] ABU-HASHIM R, BURCH R, CHANG G, et al.Test systems for harmonics modeling and simulation[J].IEEE Transactions on Power Delivery,1999,14(2):579-587.
[29] GURSOY E.Independent component analysis for harmonic source identification in electric power systems[D].Philadelphia:Drexel University,2007.
[30] GURSOY E, NIEBUR D. Harmonic load identification using complex independent component analysis[J].IEEE Transactions on Power Delivery,2009:24(1):285-292.
[31] MASOUD F, MOHAMED A, SJAREEF H.A new method for determining multiple harmonic source locations in a power distribution system[C]//2010 IEEE International Conference on Power and Energy (PECon), Kuala Lumpur,2010:146-150.
[32] 杨源,臧天磊,何正友. 一种谐波阻抗未知条件下的谐波源定位方法[J]. 电网技术,2014,38(1):222-226.
[33] 韩斐,杨洪耕. 基于复值独立分量分析的配电网谐波状态估计[J]. 电网技术,2014,38(11):3173-3179.
[34] 韩斐,杨洪耕,王佳兴,等. 变分贝叶斯独立分量分析在谐波状态估计中的应用[J]. 电力系统及其自动化学报,2016,28(4):68-72.
[35] 陈静,符玲,臧天磊,等. 考虑系统谐波阻抗改变的谐波责任定量划分方法[J]. 电力自动化设备,2016,36(6):215-222.
[36] 王艳,臧天磊,何正友. 电网参数变化条件下的谐波状态分段估计方法[ J ] . 电力系统自动化,2016,40(17):217-223.
[37] FARDANESH B, ZELINGHER S, MELIPOULOUS A P S, et al. Harmonic monitoring system via synchronized measurements[C]//International Conference on Harmonics and Quality of Power Proceedings, Athens,1998:482-488.
[38] KANAO N, YAMASHITA M, YANAGIDA H, et al.Power system harmonic analysis state estimation method for Japanese field data[J].IEEE Transactions on Power Delivery,2005,20(2):970-977.

 

上海11选5走势图 今晚六合开奖直播 立鼎彩票注册开户投注平台 搜狐彩票注册开户投注平台 福建快三注册 头奖彩票开户 玖玖网彩票注册开户投注平台 福祥彩票注册开户投注平台 红韵彩票注册开户投注平台 时时彩票注册开户投注